『機械学習スタートアップシリーズ Pythonで学ぶ強化学習 入門から実践まで』の詳細情報

No Image
AmazonカートAmazonで予約する
タイトル 機械学習スタートアップシリーズ Pythonで学ぶ強化学習 入門から実践まで
サブタイトル
著者 [著者区分]久保 隆宏 [著・文・その他]
出版社 講談社 レーベル
本体価格
(予定)
2800円 シリーズ KS情報科学専門書
ページ数 304p Cコード 3041
発売予定日 2019-01-17 ジャンル 専門/単行本/数学
ISBN 9784065142981 判型 A5
内容紹介
・Pythonプログラミングとともに、ゼロからていねいに解説。
・コードが公開されているから、すぐ実践できる。
・実用でのネックとなる強化学習の弱点と、その克服方法まで紹介。

【おもな内容】

Day1 強化学習の位置づけを知る

Day2 強化学習の解法(1): 環境から計画を立てる
 価値の定義と算出: Bellman Equation
 動的計画法による状態評価の学習: Value Iteration
 動的計画法による戦略の学習: Policy Iteration
 モデルベースとモデルフリーとの違い

Day3 強化学習の解法(2): 経験から計画を立てる
 経験の蓄積と活用のバランス: Epsilon-Greedy法
 計画の修正を実績から行うか、予測で行うか: Monte Carlo vs Temporal Difference
 経験を状態評価、戦略どちらの更新に利用するか

Day4 強化学習に対するニューラルネットワークの適用
 強化学習にニューラルネットワークを適用する
 状態評価を、パラメーターを持った関数で実装する: Value Function Approximation
 状態評価に深層学習を適用する: Deep Q-Network
 戦略を、パラメーターを持った関数で実装する: Policy Gradient
 戦略に深層学習を適用する: Advantage Actor Critic(A2C)
 状態評価か、戦略か

Day5 強化学習の弱点
 サンプル効率が悪い
 局所最適な行動に陥る、過学習をすることが多い
 再現性が低い
 弱点を前提とした対応策

Day6 強化学習の弱点を克服するための手法
 サンプル効率の悪さへの対応:モデルベースとの併用/表現学習
 再現性の低さへの対応:進化戦略
 局所最適な行動/過学習への対応:模倣学習/逆強化学習

Day7 強化学習の活用領域
 行動の最適化
 学習の最適化
目次
Day1 強化学習の位置づけを知る
Day2 強化学習の解法(1): 環境から計画を立てる
Day3 強化学習の解法(2): 経験から計画を立てる
Day4 強化学習に対するニューラルネットワークの適用
Day5 強化学習の弱点
Day6 強化学習の弱点を克服するための手法
Day7 強化学習の活用領域
著者略歴(久保 隆宏)
TIS株式会社戦略技術センター所属。Twitter:@icoxfog417。
現在は、「人のための要約」を目指し、少ない学習データによる要約の作成・図表化に取り組む。
論文のまとめを共有するarXivTimesの運営、『直感 Deep Learning』オライリージャパン(2018)の翻訳など、技術の普及に積極的に取り組む。
他の書籍を検索する